If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+36x+4=0
a = -16; b = 36; c = +4;
Δ = b2-4ac
Δ = 362-4·(-16)·4
Δ = 1552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1552}=\sqrt{16*97}=\sqrt{16}*\sqrt{97}=4\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-4\sqrt{97}}{2*-16}=\frac{-36-4\sqrt{97}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+4\sqrt{97}}{2*-16}=\frac{-36+4\sqrt{97}}{-32} $
| 8x2−3=69 | | 34m-68=26m+52 | | 4(1-6a)-5a=4-5a | | -17y=-16y+17 | | m/8-2=-6 | | -3=-15-2(c-2)-3c | | –17y=–16y+17 | | 2p^2+9p-1=5p | | x-(5x+6)=x-2 | | 0.667x=20 | | 15-1/5r=2r-1 | | 18x-3=+17x+3 | | 5x−4x=−7 | | (x+20)70=) | | 5y=5y+30 | | 50+7p=16+9p | | y=5-(1)/(3)-2 | | 3(1-b)=40 | | 8.20x=825+3.25x | | 0.14x+0.12(x+4000)=1260 | | -2n=6n+12 | | 1x*0.06+50=1x*0.05+75 | | 8(5m-2)+7=-4m+35 | | 1x-9=-1 | | 8(165-12z)=9(-51+3z) | | 10a-4.3=7a+4.7 | | 1.2x+3.4=20.6 | | 0.5=8.2w+6.7 | | 30x+180=24 | | 11x-19=-22x+33x | | 52n+8+3=33 | | -6x+5(3x-25)=-6-2 |